文章详情
在大肠杆菌中高效表达外源蛋白的策略(三)
2011-9-7 16:44:57 生物在线
翻译水平的调控
1. mRNA翻译起始
有关转录过程的大量知识使得能够在不被附近核苷酸序列影响的情况下,在表达盒中使用原核启动子[87]。对于决定蛋白质合成的起始因素,虽然尚不能完全弄清楚,但目前已经明白,mRNA转录本5’末端的独特结构是mRNA翻译起始效率的最主要决定因素。至今还没有发现通用的有效起始翻译的共同序列。已知序列的绝大部分(91%)E.coli基因的翻译起始区均含有起始密码子AUG,GUG的利用率为8%,而UUG的利用率则为1%[88,89]。Shine-Dalgarno(SD)位点在翻译起始阶段与16S rRNA的3'端相互作用。SD与起始密码子间的距离约为5-13bp,这一距离影响翻译起始的效率[90]。人们对此进行了深入的研究,以确定最佳的SD区序列和SD与起始密码子之间的最有效间隔[91,92]。Ringquist等[93]研究了RBS的翻译功能,得出了以下结论:(1)在间隔相同的情况下,UAAGGAGG的SD序列比AAGGA的SD序列能使蛋白质的产量提高3­­-6倍;(2)对于同一SD序列,存在一最佳的间隔。AAGGA的间隔为5-7个核苷酸,而UAAGGAGG的间隔为4-8个核苷酸;(3)对于同一SD序列,有一翻译所必需的最小间隔。AAGGA的最小间隔为5个核苷酸,而UAAGGAGG的最小间隔为3-4个核苷酸。这些间隔提示,在16S rRNA的3’末端和结合于核糖体P位点的fMet-tRNAf的反义密码子之间存在精确的物理关系。
在mRNA的翻译起始区的二级结构在决定基因表达效率方面具有重要作用[94,95,96]。如用一发卡结构封闭SD区和/或AUG密码子就会阻止其与30S核糖体亚单位的结合,从而抑制翻译[97]。已经设计了几种不同的策略以使mRNA形成二级结构的可能性最小。提高RBS中A、T残基的丰度能增强某些基因的表达[98]。同样地,突变SD区上游或下游的某些特定核苷酸就会抑制mRNA二级结构的形成和提高翻译效率[99]。另一途径得益于在E.coli中自然发生的一种翻译偶联现象[100]。翻译偶联的机制已被用来解释来自多顺反子mRNA的不同基因的并列表达。已经证明,当galK与上游基因偶联翻译时,经修饰的gal强启动子能够指导半乳糖激酶的高水平合成。这提示即使很弱的RBS,如果与核糖体结合也能非常有效。这种调节机制有可能在蛋白质超量生产生物技术中发挥重要作用。事实上,翻译偶联已经被广泛用于不同基因的高效表达。
除了SD区与16S rRNA结合之外,mRNA和核糖体的其他相互作用也参与翻译的起始。如核糖体S1蛋白直接参与30S亚基对mRNA的识别和结合[101]
2.翻译增强子
     已经在细菌和噬菌体中鉴定了一些在E.coli中显著增强异源基因表达的序列。Olins等从T7噬菌体基因10前导序列( g10-L)中鉴定了一9bp的序列,该序列似乎能替代有效的RBS。同SD共有序列相比,g10-L能使多种基因的表达水平提高40-340倍[102]。若将其置于合成SD序列的上游,按照β-半乳糖苷酶的活性与LacZ mRNA的水平来估计,g10-L序列能使 LacZ的翻译水平提高110倍[103]。另外的研究小组在mRNA的5’非翻译区(UTR)鉴定了一U富含序列,该序列同样具有翻译增强子活性。McCarthy等[104]E.coli atpE基因中紧接于SD位点下游鉴定一类似区域。有文献用一30bp的序列超量产生IL-2和IFN-β[105]。另有人证明在编码RNase D的rnd mRNA SD位点的上游,有一U8序列对该mRNA的有效翻译是必需的。缺失这一区域会显著降低翻译,但不影响rnd mRNA的水平和转录起始位点[106]。研究证明这些类似序列的靶位是30S核糖体亚单位的S1蛋白[107]。在另一项有趣的研究中,研究者证明在紧接起始密码子下游的序列在翻译起始过程中发挥重要作用。位于T7基因0.3编码区+15至+26之间或位于T7基因10编码区+9至+21之间被称做下游框(DB)的特定区域具有翻译增强子的功能。DB区与16S rRNA的1469-1483核苷酸互补,这一区域称做反下游框(ADB)。缺失DB将废除翻译活性。相反,如果优化DB和ADB之间的互补则会以最高水平表达dhfr融合基因。有趣的是,如果将DB从起始密码子的上游移到SD序列的位置,DB则失去功能。DB序列存在于一些E.coli和噬菌体基因中[108,109]
上述这些发现充分证明,除了SD位点和起始密码子以外,mRNA中的其他序列对于有效的翻译也是重要的。尽管其精确的机制还不太清楚,但有可能利用翻译增强子来达到超量表达蛋白质的目的。
3.mRNA的稳定性
     mRNA的快速降解势必影响蛋白质的产生。因此在这一部分重点阐述决定mRNA稳定性的因素,这将在E.coli高效表达外源基因中有实际应用。在E.coli中有多种不同的RNase参与mRNA的降解,其中包括内切核酸酶(RNase E, RNase K和RNase III)和3’外切核酸酶(RNase II和多聚核苷酸磷酸化酶[PNPase]),目前尚未在原核细胞中发现5’外切核酸酶[110]。mRNA的降解并非由非特异性的外切核酸酶随机剪切而引起,因为在mRNA的长度和半衰期之间并没有反向相关性[111]。已经证明,在E.coli中有两类保护性元件能够稳定mRNA。一类由mRNA的5’UTRs中的序列组成[112];另一类由3’UTRs和多顺反子间区的发卡结构组成[113]。其中一些元件与异源mRNA融合后起稳定剂作用,但只在严格的条件下如此。例如,噬菌体T4基因32的5’UTR在T4噬菌体感染的细胞中延长非稳定mRNA在E.coli中的半衰期[114]。革兰氏阳性菌如金黄色葡萄球菌和枯草杆菌的红霉素抗性基因(erm)编码的mRNA 5’UTR含有稳定元件。但ermCermA 5'UTRs的稳定作用需要由抑制翻译和引起核糖体失控的抗生素来诱导[115]。同样,噬菌体λPL对于λPL-trp转录本的稳定作用需要λ噬菌体的感染[116]。与此相反,E.coli ompA转录本能够在细胞快速增殖的正常情况下延长一系列异源mRNA在E.coli中的稳定性[117]。Emory等证明,在接近或紧接ompA 5'UTR的5’末端存在发卡结构对于其稳定效果是必需的。而且可以通过在5'末端添加发卡结构来延长在正常情况下不稳定的mRNA的半衰期[118]。这样看来,对异源基因添加ompA 5'稳定元有可能提高E.coli中的基因表达。另一类由3’UTR组成的mRNA保护性元件能够形成发卡结构,因而能够阻断外切核酸酶从3’末端对转录本的降解[113]。Wong和Chang[119]在苏云金杆菌的晶体蛋白基因的转录终止子中鉴定了一个这样的元件。将该“阳性反调节子”与地衣杆菌的青霉素酶基因(penP)的3’末端和人IL-2 cDNA融合,能够延长mRNA的半衰期,且提高了相应多肽在枯草杆菌和E.coli中的产量。然而,同某些5’稳定元一样,这类3’反向调节子不可能作为一个通用的mRNA稳定元。而且有证据表明,可以通过选用缺乏某些特定RNase如RNaseII或PNPase的宿主菌来提高基因的表达。这同样并非一有效途径。因为缺乏RNaseII或PNPase与RNase过量表达一样,对于E.coli整体mRNA的平均半衰期并无多大影响。而且缺乏RNaseII或PNPase的菌株常常是不稳定的[120,121]
4.翻译终止
 在mRNA中存在终止信号是翻译终止过程必不可少的。除了三个终止密码子UAA、UGA、
和UAG外,翻译终止这一复杂事件还包括核糖体、mRNA和终止位点的几种释放因子的特异相互作用[122]。在E.coli中,RF-1在终止密码子UGA处终止翻译;RF-2在UAA密码子处终止翻译[123]。最近还克隆了另外一个因子RF-3[124]
在设计表达载体时,通常插入三个终止密码子以防止核糖体的跳跃。在E.coli中偏向于使用UAA密码子[125]。一项对于2000多个E.coli基因的统计分析表明,在终止密码子和紧接三联体的核苷酸序列中存在局部非随机性[126]。同时他们还利用体内终止试验测定12个可能的四核苷酸“终止信号”(UAAN、UGAN、UAGN)的终止力量。在体内终止试验中,通过其与框架移位的竞争测定其终止效率。转录效率依据终止密码子和第四个核苷酸而有显著的差异,这种差异从80%(UAAU)到7%(UGAC)不等。这些研究表明,紧接终止密码子后的核苷酸特性强烈地影响E.coli中的翻译终止效率[127]。UAAU是E.coli中最有效的转录终止序列。此外,终止密码子5’末端的邻近序列也影响终止的效率。因此,新生肽中倒数第二位(-2位)C-末端氨基酸残基的电荷和疏水性能引起多达30倍不同的UGA终止效率,而在UAG位的终止对于-2位氨基酸残基的特性不敏感[128]。对于-1位,α-螺旋、β-链和回转倾向是UGA终止中的决定因素[129]
最新产品
更多产品>>
产品搜索

搜产品